Additional Exercises for Chapter 4
Second-Order Linear Systems
- Write the second-order differential equation
$$ \ddot x + 4 \dot x + 5 x = 0$$
as two first-order differential equations.
- Write the linear system
$$\dot x = 2x -3y, \ \dot y = 6x - y$$
as a second-order differential equation for
\(x\), and then as a second-order equation for \(y\).
- Without eliminating either of the variables,
find the general solution of the system
$$\dot x = x + 3 y, \ \dot y = 3x -7y. $$
Then find the specific solution that obeys the initial conditions
\(x(0)=10, \ y(0)=0\).
- For each of the following matrices, categorise
the corresponding linear system by finding the
trace and determinant.
- $$M=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
- $$M=\begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$$
- $$M=\begin{pmatrix} 2 & 2 \\ -3 & -2 \end{pmatrix}$$
- $$M=\begin{pmatrix} 2 & 2 \\ -2 & -1 \end{pmatrix}$$
- Find the eigenvalues, and if necessary, the eigenvectors,
of these matrices, and describe the behaviour of the
linear system for large \( t\).
- $$ M = \begin{pmatrix} 2 & -3 \\ 4 & -4\end{pmatrix} $$
- $$ M = \begin{pmatrix} -1 & 1 \\ 6 & -2\end{pmatrix} $$
- $$ M = \begin{pmatrix} -1 & 2 \\ 2 & -4\end{pmatrix} $$
- Describe the qualitative behaviour of the third-order
system
$$\dot x = x + y - 4 z, \ \dot y = - y, \ \dot z = 2x+3y -3z . $$
- A matrix \(M\) is said to be idempotent
if \(M^2=M\). Find an expression for the exponential
of an idempotent matrix in terms of \(M, \ I\) and \( e \).
Hence find the exponential of the matrix
$$M=\begin{pmatrix} 1 & 3 \\ 0 & 0\end{pmatrix}.$$
Answers
Home